
LESSON 24 - STUDY GUIDE

Abstract. This will be the first of two lessons focused on the machinery required to prove pointwise al-

most everywhere convergence of approximate identities or, more generally, sequences of Lebesgue measur-

able functions. That machinery consists of maximal operators, weak type bounds and the Marcinkiewicz
interpolation theorem, and they are already part of the tools of modern harmonic analysis, which we

are finally arriving at. For this lesson we will concentrate on the concepts of weak Lp spaces, weak type

estimates and the Marcinkiewicz interpolation theorem, which, together with Riesz-Thorin, make up
the two fundamental theorems of the theory of interpolation of operators. We will leave the study of

maximal operators and, in particular, the Hardy-Littlewood maximal function, to the next lesson.

1. Weak Lp spaces, weak type inequalities and the Marcinkiewicz interpolation theorem.

Study material: The most complete and detailed presentation of this lesson’s subject is in Folland’s
book [1], in section 6.4 Distribution Functions and Weak Lp and section 6.5 Interpolation of
Lp spaces from chapter 6 Lp Spaces. Section 6.4 is, in fact, the only section in this chapter that we
had not covered yet, because we had skipped it when we did the theory of Lp spaces at the beginning of
the course, leaving it for now. It should be pointed out that Folland’s complete presentation of the fully
general version of the Marcinkiewicz interpolation theorem is one of the few to be found in textbooks
at this level. Grafakos [2] also has a nice presentation of these topics in chapter 1 Lp Spaces and
Interpolation, specifically in section 1.1 Lp and Weak Lp and in section 1.3.1 Real Method: The
Marcinkiewicz Interpolation Theorem, but in spite of the more advanced nature of this book and
its exclusive focus in harmonic analysis, nevertheless it only presents the simpler diagonal version of
the Marcinkiewicz interpolation theorem, like we do at the end of this lesson, and not the full general
version as in Folland. Finally, I also strongly recommend Javier Duoandikoetxea’s book [3] where, after
an introductory review chapter of basic and classical results of Fourier series and transforms, he starts
presenting the modern methods in chapter 2 The Hardy-Littlewood Maximal Function. Even
though the focus of the presentation is on maximal operators and, particularly, the Hardy-Littlewood
maximal function, that we will concentrate on in the following lesson, he necessarily starts by introducing
the basic tools for its study, namely weak-type estimates and the Marcinkiewicz interpolation, also in the
simpler diagonal case.

At the conclusion of the last lesson, we got to the point where we know that partial sums of Fourier
series converge in Lp(T) norm if and only if the conjugation operator is well defined (and consequently
bounded, by the closed graph theorem) in Lp(T). Recall that we already know that conjugation cannot
hold for p = 1 or p =∞ for we have concluded that Fourier series do not converge in norm for arbitrary
functions in these cases. We were also able to characterize harmonic functions on the unit disk D ⊂ C
whose Lp(T) norms at fixed radius are uniformly bounded for 0 < r < 1 - so called Hardy space of
functions hp(D) - as Poisson integrals of Lp(T) functions on the boundary ∂D, for 1 < p ≤ ∞, or
measures in the case p = 1. So the conjugation problem for 1 < p < ∞ can be translated to harmonic
functions in hp(D) by asking whether the harmonic conjugate, that vanishes at the origin, of a function
u ∈ hp(D) is also a function in hp(D). Observe that, for p = 1, even if we started from a particular
f ∈ L1(T) and then concluded that the harmonic conjugate of its Poisson integral u = Pr ∗ f ∈ h1(D)
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Figure 1. Riemann vs. Lebesgue integration

satisfied v = Qr ∗ f ∈ h1(D), this would still not guarantee that it would lead to a conjugate function

f̃ ∈ L1(D) at the boundary ∂D because our theory up to this point only implies in this case that v = Pr∗µ,
µ ∈ M(T), so that the boundary value would generally just be a Borel measure. Unless, of course, we
had some type of additional condition, like analyticity, which, from the Riesz brothers’ theorem stated
at the end of the last lesson, Theorem 1.6, would imply that the measure would be absolutely continuous
with respect to the Lebesgue measure and thus representable by a function in L1(T). Nevertheless, surely
that cannot be the general picture because L1(T) does not admit conjugation.

We will see, however, that in spite of all these drawbacks for f ∈ L1(T), it still is true that the harmonic
conjugate v = Qr ∗ f in D always converges pointwise almost everywhere to a function, as r → 1. To
show it, we need to finally focus carefully on pointwise convergence of approximate identities, a subject
that we have been referring to since Lesson 15, without any proofs, except for Fejér’s theorem. For
that purpose, we will now introduce several topics that are part of the basic toolkit of modern harmonic
analysis, and that we have been avoiding until now in order to not overburden the beginning of the course
with technical methods in Lp spaces and approximate identities. The moment has finally arrived for us
to concentrate again on fine properties of measurable functions and Lebesgue integration.

We start with the concept of weak Lp spaces and weak-type inequalities. A basic intuitive difference
between the Riemann and the Lebesgue integral is that, for integrating, say, a positive function defined on
a compact interval of the real line, for the Riemann integral one partitions the domain into subintervals
and approximates the area under the graph by a sum of rectangles with the width of the subintervals and
the height of the values of the function, whereas for the Lebesgue integral one partitions the range of the
function and approximates the area under the graph by a sum of rectangles with height of the partition
interval and the width equal to the measure of slicing the graph at that level set.

This is often called the “layer cake representation” and can be rigorously expressed by introducing the
concept of distribution function.

Definition 1.1. Let f : X → C be a measurable function on a measure space (X,µ). We define its
distribution function λf : [0,∞[→ [0,∞] by

(1.1) λf (α) = µ({x : |f(x)| > α}).

In other words, the distribution function is the measure of the set referred to above, obtained by slicing
the graph of |f(x)|, in this general case, at the level of α. It satisfies the following elementary properties.

Proposition 1.2.

(1) λf is decreasing and right continuous.
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(2) If |f(x)| ≤ |g(x)| µ-almost everywhere x ∈ X, then λf ≥ λg
(3) If |fn(x)| ↗ |f(x)| µ-almost everywhere x ∈ X, then λfn(α)↗ λf (α).
(4) If f = g + h then λf (α) ≤ λg(α/2) + λh(α/2).
(5) For all c ∈ C \ {0} then λcf (α) = λf (α/|c|).

Proof.

(1) That λf is decreasing is obvious from the fact that, if α1 > α2 ≥ 0 then {x : |f(x)| > α1} ⊂ {x :
|f(x)| > α2} so that necessarily λf (α1) = µ({x : |f(x)| > α1}) ≤ µ({x : |f(x)| > α2}) = λf (α2).
Also, if αn ≥ α is a decreasing sequence such that αn ↘ α then {x : |f(x)| > α} = ∪n{x :
|f(x)| > αn} so that λf (α) = µ({x : |f(x)| > α}) = µ(∪n{x : |f(x)| > αn}) = limn µ({x :
|f(x)| > αn}) = limn λf (αn).

(2) If |f(x)| ≤ |g(x)| µ-almost everywhere x ∈ X, then |f(x)| > α ⇒ |g(x)| > α, except possibly on
a set of measure zero, and therefore, for every α, λf (α) = µ({x : |f(x)| > α}) ≤ µ({x : |g(x)| >
α}) = λg(α) .

(3) If |fn(x)| ↗ |f(x)| µ-almost everywhere x ∈ X, then, from the previous property, we have
λfn(α) ≤ λf (α). Also, {x : |f(x)| > α} = ∪n{x : |fn(x)| > α}, except possibly on a set of
measure zero, and therefore, for every α, λf (α) = µ({x : |f(x)| > α}) = µ(∪n{x : |f(x)| > α}) =
limn µ({x : |fn(x)| > α}) = limn λfn(α).

(4) If f = g+h then, if |f(x)| > α, either |g(x)| > α/2 or, if not, then α < |f(x)| ≤ |g(x)|+ |h(x)| ⇒
|h(x)| ≥ α − |g(x)| > α/2. Therefore {x : |f(x)| > α} ⊂ {x : |g(x)| > α/2} ∪ {x : |h(x)| > α/2}
which implies λf (α) ≤ λg(α/2) + λh(α/2).

(5) For all c ∈ C \ {0} then |cf(x)| > α is equivalent to |f(x)| > α/|c|, which means {x : |cf(x)| >
α} = {x : |f(x)| > α/|c|} and this yields λcf (α) = λf (α/|c|).

�

The distribution function is therefore a decreasing function of its variable α, which should always be
thought of as the level at which the graph of |f | is sliced and the measure computed, and it therefore
provides information about the size of |f | but none about its pointwise behavior. In particular, if a
function is translated, the pointwise values of the function generally all change, but the distribution
function remains exactly the same. The way λf decreases as α increases to infinity provides information
about the largeness of the function and is of local concern, in particular with respect to the rate of blow-up
of the function; in the opposite end, the rate at which λf increases as α decreases to zero describes how
the function behaves “at infinity” and is of global concern. It is not important, though, if a function has
compact support, as the measure of that support will be an upper bound for λf .

We can now relate Lebesgue integrals of f with its distribution function, rigorously justifying the layer
cake representation described above.

Theorem 1.3. Let Φ : [0,∞[→ [0,∞[ be a differentiable increasing function with Φ(0) = 0 and f a
measurable function on (X,µ) as above, which we now assume to be a σ-finite measure space. Then�

X

Φ(|f(x)|)dµ(x) =

� ∞
0

Φ′(α)λf (α)dα.

Proof. We can write the left hand side as�
X

Φ(|f(x)|)dµ(x) =

�
X

� |f(x)|
0

Φ′(α) dα dµ(x) =

�
X

� ∞
0

χ{α<|f(x)|}Φ
′(α) dα dµ(x),

and we now use Fubini’s theorem to exchange the order of integration,� ∞
0

�
X

χ{α<|f(x)|} dµ(x) Φ′(α) dα =

� ∞
0

µ({x : |f(x)| > α}) Φ′(α) dα =

� ∞
0

λf (α) Φ′(α) dα,
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which concludes the proof. �

So, in particular, if we make Φ(α) = α we obtain�
X

|f(x)|dµ(x) =

� ∞
0

λf (α) dα,

which is exactly the formula for the layer cake intuitive argument described above. More generally we
have the very useful following corollary.

Corollary 1.4. Let (X,µ) be a σ-finite measure space and f : X → C. Then, for 0 < p <∞, we have

(1.2) ‖f‖pLp(X) = p

� ∞
0

αp−1λf (α) dα.

while for p =∞,

‖f‖L∞(X) = inf {α ≥ 0 : λf (α) = 0}.

We thus have a totally alternative method for computing Lp norms which is extremely useful, as we
will see shortly. Observe in particular, from (1.2), that a function has finite Lp norm, for p < ∞, if its
distribution function decays just slightly faster than 1/αp as α → ∞, while it explodes to ∞ as α → 0
just slightly slower than 1/αp. If a function f has a distribution function of the order exactly 1/αp as
α→∞ or α→ 0, then the integral just barely fails to be finite, as it will diverge logarithmically at these
extremes. We say such functions are in weak Lp(X).

Definition 1.5. For 0 < p < ∞ the space of weak Lp functions on X, denoted by Lpw(X) = Lpw(X,µ)
or Lp,∞(X) = Lp,∞(X,µ), is the set of equivalence classes of µ−almost everywhere equal functions for
which1

‖f‖Lp,∞(X) = inf
{
C ≥ 0 : λf (α) ≤ Cp

αp
for all α > 0

}
= sup
α>0

(αpλf (α))1/p,

is finite. The space weak L∞(X) = L∞,∞(X) is just, by definition, the usual L∞(X).

It is easy to see that, for any constant c ∈ C we have

‖cf‖Lp,∞(X) = sup
α>0

(αpλcf (α))1/p = sup
α>0

(αpλf (α/|c|))1/p = |c|‖f‖Lp,∞(X),

from property (5) in the Proposition 1.2, while

‖f + g‖Lp,∞(X) = sup
α>0

(αpλf+g(α))1/p ≤ sup
α>0

(
αp
(
λf (α/2) + λg(α/2)

))1/p
≤ 2
(
‖f‖pLp,∞(X) + ‖g‖pLp,∞(X)

)1/p
≤ max(2, 21/p)

(
‖f‖Lp,∞(X) + ‖g‖Lp,∞(X)

)
,

from property (4) in the Proposition 1.2. Observe also that ‖f‖Lp,∞(X) = 0 implies λf (α) = 0 for all α
so that f(x) = 0 almost everywhere. We conclude therefore that Lpw(X) is not a normed space, but a
quasi-normed space because the triangle inequality fails, just like for Lp(X) with 0 < p < 1.

So a weak Lp function satisfies the bound

λf (α) ≤
‖f‖pLp,∞(X)

αp
.

1The notation Lp,∞ comes from identifying the weak Lp
w spaces with the endpoint case of Lorentz spaces usually denoted

by Lp,q which also include the classical Lp spaces as the case p = q. We will not get into Lorentz spaces, but Grafakos
[2] has a nice introduction to them in section 1.4 - Lorentz Spaces in the first chapter of the book 1 - Lp Spaces and

Interpolation.
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In Rn, the paradigmatic examples of functions in Lpw(Rn) but not in Lp(Rn) are 1
|x|n/p , whose p-th

power barely fails to be integrable at the origin or at infinity. Their distribution functions satisfy

λ 1

|x|n/p
(α) =

∣∣∣∣{x :
1

|x|n/p
> α

}∣∣∣∣ =

∣∣∣∣{x : |x| < 1

αp/n

}∣∣∣∣ =
∣∣∣B 1

αp/n
(0)
∣∣∣ = ωn

1

αp
,

where ωn denotes de volume of the unit ball in Rn and by the absolute value of a set A ⊂ Rn, |A|, we

mean its Lebesgue measure. So we have 1
|x|n/p ∈ L

p
w(Rn) with ‖ 1

|x|n/p ‖Lp,∞(Rn) = w
1/p
n .

On the other hand, all the functions in the usual Lp(X) spaces - now understandably also called strong
Lp(X) spaces - are also in Lpw(X). That’s a consequence of the important Chebyshev inequality, for any
0 < p <∞ and α > 0

(1.3) αpλf (α) = αpµ({x : |f(x)| > α}) ≤
�
{x:|f(x)|>α}

|f(x)|pdµ ≤
�
X

|f(x)|pdµ = ‖f‖pLp(X).

So we have the following proposition.

Proposition 1.6. Let 0 < p <∞. Then Lp(X) ⊂ Lpw(X) = Lp,∞(X) and ‖f‖p,∞Lp(X) ≤ ‖f‖
p
Lp(X) for any

f ∈ Lp(X).

So, the example seen above, f(x) = 1
|x|n/p , in Rn, shows that the inclusion Lp(Rn) ⊂ Lpw(Rn) is strict

for 0 < p <∞, while for p =∞ they are, by definition, the same spaces L∞(Rn) = L∞w (Rn).
Weak-type inequalities, or estimates, are bounds that enable control of the Lpw (quasi)norms. Of

particular importance, are those operators from a vector space of measurable functions on a space (X,µ)
to measurable functions on another space (Y, ν) for which weak and strong Lq norms on Y can be
controlled by strong Lp norms on X. We are interested in a slightly more general class of operators than
just the linear ones, so we introduce sublinear operators as those that satisfy

|T (f + g)| ≤ |Tf |+ |Tg| and |T (cf)| = |c||Tf |,

for all f, g in its domain and c ∈ C.

Definition 1.7. Let 0 < p, q ≤ ∞ and T a sublinear operator from a vector space of measurable functions
on (X,µ) that includes Lp(X,µ) to measurable functions on (Y, ν). We say that

• T is weak type (p, q) if Tf ∈ Lqw(Y, ν) for all f ∈ Lp(X,µ) and there exists C ≥ 0 such that

‖Tf‖Lqw(Y,ν) ≤ C‖f‖Lp(X,µ).

• T is strong type (p, q) if Tf ∈ Lq(Y, ν) for all f ∈ Lp(X,µ) and there exists C ≥ 0 such that

‖Tf‖Lq(Y,ν) ≤ C‖f‖Lp(X,µ).

Clearly, from Proposition 1.6 we conclude that strong type (p, q) operators are also weak type (p, q).
And, when q =∞, strong type (p,∞) is the same as weak type (p,∞).

We have finally built up the definitions and concepts that enable us to conclude this lesson with one of
the most important theorems in this course, the second of the two fundamental interpolation theorems:
the Marcinkiewicz interpolation. As opposed to the crucial role of the Three-Lines lemma in the Riesz-
Thorin interpolation theorem, the Marcinkiewicz interpolation theorem does not use any complex analysis
and therefore it is considered the paradigm of the real interpolation method, from which a whole theory
of analogous interpolation methods has grown and developed for the last almost 100 years. The general
theory of interpolation of operators therefore consists of generalizations of the method used in the Riesz-
Thorin interpolation theorem, called complex interpolation, in parallel with generalizations of the method
used in the Marcinkiewicz interpolation, called real interpolation.
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Theorem 1.8. (Marcinkiewicz) Let (X,µ) and (Y, ν) be σ-finite measure spaces and 0 < p0 < p1 ≤ ∞.
Let T be a sublinear operator from Lp0(X,µ) + Lp1(X,µ) to the space of measurable functions on (Y, ν).
Then, if T is weak type (p0, p0) and weak type (p1, p1), i.e. there exist constants C0, C1 ≥ 0 such that

‖Tf‖Lp0,∞(Y,ν) ≤ C0‖f‖Lp0 (X,µ),
and

‖Tf‖Lp1,∞(Y,ν) ≤ C0‖f‖Lp1 (X,µ),
then T is strong type (p, p) for all p0 < p < p1.

Proof. Let f ∈ Lp(X). Then, as usual, we split f into a sum f = fα0 + fα1 , with fα0 ∈ Lp0(X) and
fα1 ∈ Lp1(X), for all α > 0, by cutting f into high and low parts, respectively

fα0 = fχ{x:|f(x)|>α} and fα1 = fχ{x:|f(x)|≤α}.

Due to the sublinearity of T we then have

|Tf | ≤ |Tfα0 |+ |Tfα1 |,
and just like in property (4) of Proposition 1.2 we have

λTf (α) ≤ λTfα0 (α/2) + λTfα1 (α/2).

Now, if p1 <∞, from the weak type estimates we obtain

λTfαi (α/2) ≤
(

2Ci‖fαi ‖Lpi (X)

α

)pi
, i = 0, 1,

and therefore, estimating the Lp(Y ) norm of Tf from (1.2) we obtain

‖Tf‖pLp(Y ) = p

� ∞
0

αp−1λTf (α)dα

≤ p

� ∞
0

αp−1
(
λTfα0 (α/2) + λTfα1 (α/2)

)
dα

≤ p

� ∞
0

αp−1λTfα0 (α/2)dα+ p

� ∞
0

αp−1λTfα1 (α/2)dα

≤ (2C0)p0p

� ∞
0

αp−1−p0‖fα0 ‖
p0
Lp0 (X)dα+ (2C1)p1p

� ∞
0

αp−1−p1‖fα1 ‖
p1
Lp1 (X)dα

= (2C0)p0p

� ∞
0

αp−1−p0
�
X

|fα0 (x)|p0dµ dα+ (2C1)p1p

� ∞
0

αp−1−p1
�
X

|fα1 (x)|p1dµ dα

= (2C0)p0p

� ∞
0

αp−1−p0
�
{x:|f(x)|>α}

|f(x)|p0dµ dα+ (2C1)p1p

� ∞
0

αp−1−p1
�
{x:|f(x)|≤α}

|f(x)|p1dµ dα

= (2C0)p0p

�
X

(� |f(x)|
0

αp−1−p0dα

)
|f(x)|p0dµ+ (2C1)p1p

�
X

(� ∞
|f(x)|

αp−1−p1dα

)
|f(x)|p0dµ

=
(2C0)p0p

p− p0

�
X

|f(x)|p−p0 |f(x)|p0dµ +
(2C1)p1p

p1 − p

�
X

|f(x)|p−p1 |f(x)|p1dµ

=

(
(2C0)p0p

p− p0
+

(2C1)p1p

p1 − p

) �
X

|f(x)|pdµ.

If p1 =∞ then we just have a weak type estimate (p0, p0)

λTfα0 (α) ≤
(
C0‖fα0 ‖Lp0 (X)

α

)p0
,
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and because ‖Tfα1 ‖L∞(Y ) ≤ C1‖fα1 ‖L∞(X) we conclude that |Tfα1 (y)| ≤ C1α for ν-almost everywhere
y ∈ Y . Therefore λTf (2C1α) ≤ λTfα0 (C1α) + λTfα1 (C1α) = λTfα0 (C1α) because the measure of the set
where |Tfα1 (y)| > C1α is zero. Hence

‖Tf‖pLp(Y ) = p

� ∞
0

αp−1λTf (α)dα

= 2C1p

� ∞
0

(2C1α)p−1λTf (2C1α)dα

≤ (2C1)pp

� ∞
0

αp−1λTfα0 (C1α)dα

≤ 2pCp−p01 Cp00 p

� ∞
0

αp−1−p0‖fα0 ‖
p0
Lp0 (X)dα

= 2pCp−p01 Cp00 p

� ∞
0

αp−1−p0
�
X

|fα0 (x)|p0dµ dα

= 2pCp−p01 Cp00 p

� ∞
0

αp−1−p0
�
{x:|f(x)|>α}

|f(x)|p0dµ dα

= 2pCp−p01 Cp00 p

�
X

(� |f(x)|
0

αp−1−p0dα

)
|f(x)|p0dµ

= 2pCp−p01 Cp00 p

�
X

|f(x)|p−p0 |f(x)|p0dµ

= 2pCp−p01 Cp00
p

p− p0

�
X

|f(x)|pdµ.

�

To conclude we will just make a couple of observations. The best constant for the strong (p, p)
interpolated bound can be obtained by optimizing the point where one splits f into the high and low
parts f0 and f1 and can be shown to be (see Grafakos [2] or Duoandikoetxea [3])

C = 2

(
p

p− p0
+

p

p1 − p

)1/p

C1−θ
0 Cθ1 ,

where θ ∈]0, 1[ is the interpolation parameter

1

p
=

1− θ
p0

+
θ

p1
.

Actually, what we proved here is just the diagonal case of the Marcinkiewicz interpolation, with q0 = p0
and q1 = p1, which is the most frequently useful. But the theorem is actually more general and, just like
the Riesz-Thorin interpolation theorem, can be proved for different p0, q0, p1, q1 but conditioned, however,
to the constraint q0 ≥ p0 and q1 ≥ p1. The full proof of the general case can be found in Folland’s book
[1].

Finally, it is worth comparing the Riesz-Thorin and the Marcinkiewicz interpolation theorems. To
begin with, they yield the same type of conclusion if the operator T is linear and we start with strong
type estimates for Marcinkiewicz. But the Riesz-Thorin theorem produces a bound with a much sharper
constant. Also, there are ranges of exponents, in particular when q0 < p0 or q1 < p1, that can only be
interpolated with Riesz-Thorin because not even the general Marcinkiewicz theorem can be used in those
cases. On the other hand, the Marcinkiewicz interpolation theorem can be used for sublinear operators



8 LESSON 24

and weak type estimates, which the Riesz-Thorin theorem does not cover. They are, therefore, quite
independent in their applicability.

For the next lesson, the machinery of weak Lpw spaces, weak type estimates and the Marcinkiewicz
interpolation theorem will be of fundamental importance to obtain pointwise almost everywhere conver-
gence of approximate identities. As we will see, these are typically obtained from weak type bounds for
so called maximal operators, which are only sublinear. The Marcinkiewicz interpolation theorem will also
be one of the main ingredients in our final proof of the conjugation problem for Lp(T), and thus of the
convergence of Fourier series in Lp(T) norm, for 1 < p <∞, because it will result from the interpolation
of the strong type (2, 2) bound for the conjugation operator, with a crucial weak type (1, 1) estimate that
we will still prove.
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